Buffer Capacity, Ecosystem Feedbacks, and Seawater Chemistry under Global Change

نویسندگان

  • Christopher P. Jury
  • Marlin J. Atkinson
  • Robert J. Toonen
  • Roger Revelle
چکیده

Ocean acidification (OA) results in reduced seawater pH and aragonite saturation state (Ωarag), but also reduced seawater buffer capacity. As buffer capacity decreases, diel variation in seawater chemistry increases. However, a variety of ecosystem feedbacks can modulate changes in both average seawater chemistry and diel seawater chemistry variation. Here we model these effects for a coastal, reef flat ecosystem. We show that an increase in offshore pCO2 and temperature (to 900 μatm and + 3 °C) can increase diel pH variation by as much as a factor of 2.5 and can increase diel pCO2 variation by a factor of 4.6, depending on ecosystem feedbacks and seawater residence time. Importantly, these effects are different between day and night. With increasing seawater residence time and increasing feedback intensity, daytime seawater chemistry becomes more similar to present-day conditions while nighttime seawater chemistry becomes less similar to present-day conditions. Recent studies suggest that carbonate chemistry variation itself, independent of the average chemistry conditions, can have important effects on marine organisms and ecosystem processes. Better constraining ecosystem feedbacks under global change will improve projections of coastal water chemistry, but this study shows the importance of considering changes in both average carbonate chemistry and diel chemistry variation for organisms and ecosystems. OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2) on the order of −66 to −199 Tg C year−1 (1012 g C), contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exc...

متن کامل

Phytoplankton responses and associated carbon cycling during shipboard carbonate chemistry manipulation experiments conducted around Northwest European shelf seas

The ongoing oceanic uptake of anthropogenic carbon dioxide (CO2) is significantly altering the carbonate chemistry of seawater, a phenomenon referred to as ocean acidification. Experimental manipulations have been increasingly used to gauge how continued ocean acidification will potentially impact marine ecosystems and their associated biogeochemical cycles in the future; however, results among...

متن کامل

The Theory of Ecology

Human infl uences on ecological drivers are increasingly recognized as dominant processes across a range of spatial and temporal scales. Regional to global-scale changes in drivers and important resources, such as atmospheric carbon dioxide concentrations, climate, and nitrogen deposition, are known to alter biotic structure, ecosystem function, and biogeochemical processes with feedbacks to hu...

متن کامل

Methane excess in Arctic surface water- triggered by sea ice formation and melting

Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on m...

متن کامل

The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming

A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013